H(t)=-16t^2+16t+483

Simple and best practice solution for H(t)=-16t^2+16t+483 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H(t)=-16t^2+16t+483 equation:



(H)=-16H^2+16H+483
We move all terms to the left:
(H)-(-16H^2+16H+483)=0
We get rid of parentheses
16H^2-16H+H-483=0
We add all the numbers together, and all the variables
16H^2-15H-483=0
a = 16; b = -15; c = -483;
Δ = b2-4ac
Δ = -152-4·16·(-483)
Δ = 31137
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15)-\sqrt{31137}}{2*16}=\frac{15-\sqrt{31137}}{32} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15)+\sqrt{31137}}{2*16}=\frac{15+\sqrt{31137}}{32} $

See similar equations:

| 54=4y+10 | | -5m=8–4m | | 91=55+x | | 4/3x-8/3x=22/3 | | x/87=25 | | 7y+8=5+3y | | 208=116-w | | 7x-3=5×+7 | | 5-3s=45 | | 5=9x-24 | | x/5=-79 | | 6/x+4-4/x-4=6/x^2-16 | | 3+-2k=14 | | Y=29x^2-59x | | 1/7n=1/3 | | -2-3n-5=-16 | | B=55+(10+9)w | | 4=u+14/5 | | 6m−8=2+9m−1 | | 38=z/5+29 | | b/8+53=61 | | v3– 2= 5 | | 3x+3-x=7+2x | | 2(x-5)+x+5=13 | | v/3–2=5 | | 16v-9v=8 | | 29=x/3+5 | | t/7+18=24 | | 3x+2=2x+0 | | 12.15=2g+3.71 | | t/7+ 18= 24 | | -3(2x-2)=0 |

Equations solver categories